Якщо B = 0 (нульова матриця), то система лінійних рівнянь називається системою однорідних лінійних рівнянь. Тоді як якщо B ≠ 0, то систему лінійних рівнянь називають системою неоднорідних лінійних рівнянь.
Неоднорідні диференціальні рівняння має функцію незалежної, відмінної від нуля змінної з іншого боку рівняння та функцію залежної змінної з іншого боку .
Неоднорідне диференціальне рівняння – це диференціальне рівняння, яке містить функцію в правій частині рівняння. Ми це знаємо Однорідні диференціальні рівняння – це рівняння, які мають нуль у правій частині рівняння .
Диференціальне рівняння вважається нелінійним, якщо диференціальне рівняння відповідає принаймні одному з таких критеріїв: a. Містить залежну змінну, похідні якої мають ступінь, відмінний від одиниці. b. Відбувається множення залежних змінних та/або їх похідних.
Система неоднорідних рівнянь є системи, в яких постійний вектор праворуч від знака рівності відмінний від нуля . У лекції дається загальна характеристика розв’язків неоднорідних систем. Перед читанням цієї лекції рекомендуємо прочитати лекцію про однорідні системи.
Диференціальне рівняння першого порядку є однорідним, якщо воно має вигляд: dydx=F(yx), де F(yx) F ( yx ) – однорідна функція . У цьому контексті однорідний використовується для позначення функції x і y, яка не змінюється при множенні обох аргументів на константу, а саме